
gooqwerty777@gmail.com

mailto:gooqwerty777@gmail.com

Introduction

● Motivation: lots of special-purpose programs
should process large amounts of raw data

– crawl(analyze) documents, web request logs, etc.

– should use lots of machine to reduce processing
time

– implementation is time-consuming and complex

● Solution: Design a programming model–
MapReduce

–Hides the details of parallelization, fault-tolerance,
locality optimization, and load balancing.

Map and Reduce

● Divide, Conquer, and Combine

-> Divide, Maps, and Reduces

● User only need to implement Map() and
Reduce() functions!(and some arguments)

Programming Model

• Take an input pair

• produces a set of intermediate
key/value pairs

Map

• sorted intermediate pairs by key value

• groups together all intermediate values
with the same intermediate key

Shuffling

• Take intermediate key and value set of
key

• merges together these value
Reduce

More Example

● Inverted Index

– Find specified word in set of files

– Input: <files(splited), docID>

– Intermediate: <word, docID>

– Final: <word, list<docID>>

● Distributed Grep

● Distributed Sort

● Count of URL Access Frequency

● Term-Vector per Host

More Example

 Distributed Grep

 Distributed Sort

 Inverted Index

 Intermediate: <word, docID> → Final: <word,
list<docID>>

 Count of URL Access Frequency

 <URL, 1> → <URL, TotalCount>

 Term-Vector per Host

 summarize the most important words in docs

 <term, freq> → vector<term, freq>

Implementation

● Parallelization

– Input of Map: partitioning the input data into M splits

– Input of Reduce: partitioning intermediate data into R
files

● Master program: assign M map tasks and R
reduce tasks to worker programs

–Map workers: Intermediate key/value pairs are written
to local disk. Locations of these files would pass back
to master.

– Reduce workers: Get location from master and use
remote procedure calls(RPC) to read data in local
disk.

Fault Tolerance
● Worker Failure

– ping every worker periodically

– tasks in failed machine :

● rescheduling now assigning task

● reset completed map tasks and rescheduling

● but completed reduce tasks don't need to reset (files
are stored in global file system)

● Master Failure

– failure of master is unlikely

– aborts the MapReduce, clients should check and
retry it

Backup Tasks

● Straggler : machine that takes an unusually long
time to complete tasks

– bad disk

– other tasks

● Solution: when MapReduce is close to
completion, master schedules backup
executions of the remaining in-progress tasks

– Only wait one of they to complete

– Takes 30% less time to complete, with computational
resources increase by no more than a few percent

Performance
● Environment

– 1800 machines

– two 2GHz Intel Xeon processors with Hyper-Threading
enabled, 4GB of memory, two 160GB IDE disks, and
a gigabit Ethernet link.

● Sorts approximately 1TB of data

– 891sec

● intentionally killed 200 out of 1746 workers several
minutes

– 933sec (just 5% increase)

● No backup tasks

– 1283sec (44% increase)

0

200

400

600

800

1000

1200

1400

Normal Fault Tolerance Without Backup
task

Performance

Execute time(Sec)

Advantage

● Large variety of problems are easily expressible
as MapReduce

– Every work which can be divided!

● Easy to use for programmers who have no
experience with distributed or parallel systems

–What you think is how to deal with splited data, and
how to compose result

● Code is simpler, easier to understand and modify

Application

● large-scale machine learning

● extraction of data used to produce reports of
popular queries

● extraction of properties of web pages

–PageRank

● Open Source implementation

–Hadoop

Refinements
● Locality optimization

–Input file copies in local disks

● Skipping Bad Records

– ignore a few bad records, when doing statistical
analysis on a large data set.

– signal handler (When error, send information to
master)

● Counter object

–Piggybacked on the ping response

Refinements
● Locality optimization

– Input file copies in local disks

● Intermediate key/value pairs is in order

– Utilized sort and random access

● Input and Output Types

– the key is the offset in the file and the value is the contents of the line.

– reader interface

● Skipping Bad Records

– ignore a few bad records, when doing statistical analysis on a large data set.

– signal handler (When error, send information to master)

● Counter object

– Piggybacked on the ping response

● Combiner function

– partial merging at local disk before sending record

Reference

 Jeffrey Dean and Sanjay Ghemawat,

2004, MapReduce: Simplified Data

Processing on Large Clusters

