MlapReduce
40

googwerty/77@gmail.com



mailto:gooqwerty777@gmail.com

Introduction

Motivation: lots of special-purpose programs
should process large amounts of raw data

crawl(analyze) documents, web request logs, etc.

should use lots of machine to reduce processing
time

Implementation is time-consuming and complex

Solution: Design a programming model—
MapReduce

Hides the details of parallelization, fault-tolerance,
locality optimization, and load balancing.



Map and Reduce

Divide, Conquer, and Combine

-> Divide, Maps, and Reduces

User only need to implement Map() and
Reduce() functions!(and some arguments)



Programming Model

Take an input pair

produces a set of intermediate
key/value pairs

sorted intermediate pairs by key value

groups together all intermediate values
with the same intermediate key

Take intermediate key and value set of
key

merges together these value




The overall MapReduce word count process

l Mapping Shuffling

Input Splitting Final result




More Example

Inverted Index

-iInd specified word in set of files
nput: <files(splited), docID>
ntermediate: <word, doclD>
-Inal: <word, list<doc|D>>

Distributed Grep
Distributed Sort
Count of URL Access Frequency

Term-Vector per Host




More Example

Distributed Grep
Distributed Sort

nverted Index

Intermediate: <word, docID> — Final: <word,
list<docID>>

Count of URL Access Frequency
<URL, 1> — <URL, TotalCount>

Term-Vector per Host

summarize the most important words in docs
<term, freq> — vector<term, freg>




User
Program

(1) fork .*

(1) fork 1 fork

: E T i
(2). dssign
map

\WDI‘I{EI‘

split 0

(6] write

output
file O

split 1

(5) remote read

split 2 MO i4) local write
worker -l
split 3

@ output
file 1

split 4

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files



Implementation

Parallelization

Input of Map: partitioning the input data into M splits

Input of Reduce: partitioning intermediate data into R
files

Master program: assign M map tasks and R
reduce tasks to worker programs

Map workers: Intermediate key/value pairs are written

to local disk. Locations of these files would pass back
to master.

Reduce workers: Get location from master and use

remote procedure calls(RPC) to read data in local
disk.



Fault Tolerance

Worker Failure

ping every worker periodically

tasks in failed machine :

e rescheduling now assigning task
e reset completed map tasks and rescheduling

e but completed reduce tasks don't need to reset (files
are stored in global file system)

Master Failure

failure of master is unlikely

aborts the MapReduce, clients should check and
retry it



Backup Tasks

Straggler : machine that takes an unusually long
time to complete tasks

bad disk
other tasks

Solution: when MapReduce is close to
completion, master schedules backup
executions of the remaining in-progress tasks

Only wait one of they to complete

Takes 30% less time to complete, with computational
resources increase by no more than a few percent



Performance

Environment
1800 machines

two 2GHz Intel Xeon processors with Hyper-Threading
enabled, 4GB of memory, two 160GB IDE disks, and
a gigabit Ethernet link.

Sorts approximately 1TB of data
891sec

intentionally killed 200 out of 1746 workers several
minutes

933sec (just 5% increase)
No backup tasks
1283sec (44% increase)



1400

1200

1000

800

G10]0)

400

200

Performance

Normal

Fault Tolerance

Without Backup
task

® Execute time(Sec)



Advantage

Large variety of problems are easily expressible
as MapReduce

Every work which can be divided!

Easy to use for programmers who have no
experience with distributed or parallel systems

What you think is how to deal with splited data, and
how to compose result

Code is simpler, easier to understand and modify



Application

large-scale machine learning

extraction of data used to produce reports of
popular queries

extraction of properties of web pages

PageRank
Open Source implementation

Hadoop



Refinements
Locality optimization
Input file copies in local disks
Skipping Bad Records

ignore a few bad records, when doing statistical
analysis on a large data set.

signal handler (When error, send information to
master)

Counter object
Piggybacked on the ping response



*EENERIS

Locality optimization
Input file copies in local disks
Intermediate key/value pairs is in order
Utilized sort and random access
Input and Output Types
the key is the offset in the file and the value is the contents of the line.
reader interface
Skipping Bad Records

ignore a few bad records, when doing statistical analysis on a large data set.
signal handler (When error, send information to master)

Counter object
Piggybacked on the ping response
Combiner function

partial merging at local disk before sending record



Reference

Jeffrey Dean and Sanjay Ghemawat,
2004, MapReduce: Simplified Data
Processing on Large Clusters



The End




